Edexcel GCSE Physics

Topic 9: Forces and their effects
Notes
(Content in bold is for Higher Tier only)

Object Interaction

- Examples of interaction of objects at a distance without contact:
- Gravitational attraction
- There is an attraction between two objects with mass, the larger mass gives greater attraction
- Electrostatic attraction/repulsion
- A Larger charge gives greater force
- Like charges repel, opposite charges attract
- Magnetic attraction/repulsion
- A stronger magnet gives stronger field, having a greater force
- Like poles repel, opposite poles attract
- Examples of interaction of objects with contact
- Normal contact force
- The force is perpendicular to the plane of contact
- Friction
- Surfaces that are rough cause friction when moved

Vectors

- A vector has size and direction - e.g. a force of 10N directed downwards
- Weight, velocity, force, displacement, etc.
- Scalar has just size - so direction plays no part in describing the value
- Mass, distance, speed, etc.

Vector diagrams

Free body diagrams

- Shows the direction of forces that are present in a situation

Points to note:

- The reaction force always acts at the normal to the line of contact, from the point of contact
- Friction acts in the opposite direction to movement, along line of contact
- Weight always acts downwards, acting from Centre of Mass

Scale Drawings

- The length of each arrow represents its size (in relation to the other forces acting on the object)
- So direction with larger arrows shows resultant force
- If arrows are in opposite directions with equal length
- (Equal in magnitude but opposite in direction)
- The forces cancel out
- So the object is in equilibrium
- So travels at a constant velocity

http://www.physicsclassroom.com/

Diagram:

- At B, the drag is a lot less than the weight, as shown by the arrows, so the resultant force causes him to accelerate
- At C, the difference in arrow lengths is less, so the resultant force is smaller, so smaller acceleration

Isolated solid systems means no forces are present that come from a source outside the system - E.g. a magnetic ball just rolling down a hill, an external force would be a magnet at the top of the hill

Skydiver

- Forces that act are air resistance and weight

Diagram A

Diagram B

http://www.physicsclassroom.com/

- Initially, the skydiver has no air resistance and the only force acting on him is weight
- As he falls, he accelerates, increasing his speed
- This makes air resistance increase
- Therefore, the resultant force decreases
- Therefore, acceleration decreases as $F=m a$, so he is not speeding up as quickly
- Eventually weight and air resistance are equal and balanced, so there is no resultant force
- So there is no acceleration and terminal velocity is reached

Vehicle

- Initially, low air resistance and thrust is only hindered by friction
- Air resistance increases, decreasing resultant force
- Eventually the car is travelling at terminal velocity, where the thrust is balanced by drag and friction, so no resultant force

Friction acts

- (This is immediately changed when more thrust is added, as it now becomes the resultant force until the drag increases to balance it again)

Rotation (Physics Only)

Rotation occurs...

- If an object is attached to a pivot point
- A point which it can rotate about, but cannot move away from
- And a force is applied not towards the point (see diagram)
- The object will not rotate, and will just be held still, as there is no resultant force
- If the force is applied perpendicular to the object
- It will move about the pivot in this direction
- If the Force is applied not perpendicular to the object
- Need to find perpendicular distance from pivot to line of force
- See which direction it will turn

Moment $=F d$
Moment of a force (newton metre, Nm) $=$ force (newton, N) \times distance perpendicular to the direction of the force (metre, m).

Bike Riding - pressing your foot down on the pedal, causes a moment about the pivot, turning the pedal arms
equilibrium occurs when: sum of anticlockwise moments = sum of clockwise moments

Levers and Gears (Physics Only)

- Gears can change speed, force or direction by rotation

For an example when the first gear is supplying the force

- If connected to a gear with fewer teeth (i.e. a smaller gear)
- The second gear will turn faster
- But with less force
- In opposite direction to first gear
- If connected to a gear with more teeth (i.e. a larger gear)
- Turns slower
- More force
- In opposite direction

The second gear will always turn in the opposite direction

- The blue gear is supplying the power
- To increase the power, a larger gear is used for the secondary (red)
- As the force on the red gear is a further distance from its pivot, the momentum of the larger gear is greater

www explainthatstuff com

Lubrication - reduces friction, so reduces unwanted energy transfer (so less heat loss etc.) and increases efficiency

